ارزیابی کارآیی دو نرم افزار شبکه عصبی مصنوعی در پیش بینی تبخیر- تعرق گیاه مرجع

Authors

حمید زارع ابیانه

عادل قاسمی

مریم بیات ورکشی

کوروش محمدی

علی اکبر سبزی پرور

abstract

در این تحقیق، کارائی دو نرم­افزارشبکه عصبی مصنوعی (ann) در برآورد تبخیر-تعرق گیاه مرجع (et0) بررسی گردید. بدین منظور از داده­های 2 سال لایسیمتری به عنوان ارقام شاهد برای ارزیابی استفاده شده و دو نرم­افزار مرسوم ns وnw  با قابلیت به­کارگیری آلگوریتم­های متفاوت، به­کار رفت. جهت ارزیابی اجرای دو نرم­افزار برای آرایش­ها، قواعد یادگیری و توابع محرک مختلف، از شاخص­های آماری جذر میانگین مربعات خطا (rmse)، میانگین خطای مطلق (mae) و ضریب تعیین (r2) استفاده شد. با اجرای نرم­افزار ns آرایش مطلوب با ویژگی حداقل rmse، mae و حداکثر r2 در مقایسه با ارقام مشاهداتی (لایسیمتری) به ترتیب معادل 08/0 (میلی متر در روز)، 07/0 (میلی متر در روز) و 87/0 بدست آمد. نتایج تحقیق نشان داد نرم­افزار ns با آرایش مطلوب که ویژگی مدل آموزشی گرادیان مزدوج و تابع محرک سیگمویید را دارا باشد، نسبت به نرم­افزار nw با توجه به تعداد تکرار کمتر و زمان محاسباتی کوتاه­تر برتری دارد. نتایج نشان داد وجود دو لایه پنهان نسبت به یک لایه پنهان بر دقت تبخیر-تعرق برآورد شده از نرم­افزار، تاثیری نداشت. بررسی حساسیت مدل شبکه عصبی مصنوعی نشان داد که تبخیر- تعرق بیشترین وابستگی را به حداکثر دمای هوا و کمترین وابستگی را به حداقل رطوبت نسبی دارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی کارآیی دو نرم‌افزار شبکه عصبی مصنوعی در پیش‌بینی تبخیر- تعرق گیاه مرجع

در این تحقیق، کارائی دو نرم­افزارشبکه عصبی مصنوعی (ANN) در برآورد تبخیر-تعرق گیاه مرجع (ET0) بررسی گردید. بدین منظور از داده­های 2 سال لایسیمتری به عنوان ارقام شاهد برای ارزیابی استفاده شده و دو نرم­افزار مرسوم NS وNW  با قابلیت به­کارگیری آلگوریتم­های متفاوت، به­کار رفت. جهت ارزیابی اجرای دو نرم­افزار برای آرایش­ها، قواعد یادگیری و توابع محرک مختلف، از شاخص­های آماری جذر میانگین مربعات خطا (RM...

full text

ارزیابی دقت نرم افزار CropWat در تخمین تبخیر و تعرق گیاه مرجع در منطقه اصفهان

      پیام نجفی 1 ، مصطفی ستار2   1 - استادیار دانشکده کشاورزی،‌دانشگاه آزاد اسلامی واحد خوراسگان، اصفهان، صندوق پستی 158-81595 ، پست الکترونیک: [email protected]   2- عضو هیات علمی (بازنشسته) مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان     چکیده تبخیر و تعرق یکی از فاکتورهای اساسی در بهبود کارآیی مصرف است. غالب مدل‌ها، تبخیر و تعرق را به وسیله تبخیر و تعرق پتاسیل ارزیابی می‌کنند. به من...

full text

کاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی

برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار می‌رود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول می‌رسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از داده‌های هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...

full text

پیش بینی تبخیر-تعرق مرجع با استفاده از شبکه های عصبی مصنوعی rbf ،mlp svm

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم ترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش بینی تبخیر-تعرق مرجع روزانه و هفتگی می تواند در پیش بینی نیاز آبی گیاهان و برنامه ریزی کوتاه مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی mlp(پرسپترون چندلایه)، rbf (شبکه تابع پایه ای شعاعی)، svm (ماشین بردار پشتیبان) در پیش بینی تبخیر-تعرق م...

full text

مقایسه روش‌های سری زمانی و شبکه عصبی مصنوعی در پیش‌بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

     تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های A...

full text

My Resources

Save resource for easier access later


Journal title:
دانش آب و خاک

Publisher: دانشگاه تبریز

ISSN 2008-5133

volume 19

issue بهار و تابستان 2009

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023